

В 2009 г., как и в предыдущие годы, в рамках **радиационного мониторинга** в составе НСМОС осуществлялись регулярные наблюдения за радиационной обстановкой на территории Республики Беларусь: определялись уровни радиоактивного загрязнения атмосферного воздуха, поверхностных вод и почв на территориях, подвергшихся радиоактивному загрязнению в результате катастрофы на Чернобыльской АЭС.

Радиационный мониторинг атмосферного воздуха

В 2009 г. на территории Республики Беларусь функционировало 55 дозиметрических постов по измерению мощности дозы гамма-излучения (МД). Измерения проводились ежедневно, включая выходные и праздничные дни. На 27 дозиметрических постах, расположенных на всей территории Республики Беларусь, контролировались радиоактивные выпадения из приземного слоя атмосферы (отбор проб производился с помощью горизонтальных планшетов). На 21 дозиметрическом посту пробы для определения суммарной бета-активности естественных атмосферных выпадений отбирались ежедневно, 6 постов были переведены в дежурный режим. Отбор проб на них производился один раз в 10 дней.

В 7 городах республики (Браслав, Гомель, Минск, Могилев, Мозырь, Мстиславль, Пинск) осуществлялся отбор проб радиоактивных аэрозолей в приземном слое атмосферы с использованием фильтровентиляционных установок. В гг. Могилеве и Минске пробы отбирались в дежурном режиме (1 раз в 10 дней), на остальных пунктах, расположенных в зонах влияния атомных электростанций сопредельных государств, ежедневно.

В пробах радиоактивных аэрозолей ежедневно измерялась суммарная бета-

активность и содержание короткоживущих радионуклидов, и, в первую очередь, йода-131. Ежемесячно измерялся изотопный состав гамма-излучающих радионуклидов в месячных пробах радиоактивных аэрозолей, а также в месячных пробах выпадений из атмосферы, объединенных в группы по территориальному признаку.

В 2009 г. уровни МД, радиоактивность естественных выпадений и аэрозолей в воздухе на территории Республики Беларусь соответствовали установившимся многолетним значениям. Данные радиационного мониторинга атмосферного воздуха показали, что радиационная обстановка на территории республики оставалась стабильной. Уровни МД, превышающие доаварийные значения, зарегистрированы только в контролируемых городах, находящихся в зонах радиоактивного загрязнения: Брагин, Наровля, Славгород, Хойники, Чечерск.

Среднегодовые значения МД в 2009 г. составляли: в Брагине – 0,60 мкЗв/ч, в Наровле – 0,52 мкЗв/ч, в Славгороде – 0,22 мкЗв/ч, в Хойниках – 0,24 мкЗв/ч, в Чечерске – 0,26 мкЗв/ч. В областных городах среднегодовой уровень МД находился в пределах от 0,10 до 0,12 мкЗв/ч.

В остальных контролируемых населенных пунктах МД не превышала доаварийный уровень (до 0,20 мкЗв/ч).

Среднегодовые значения *суммарной бета-активности* проб радиоактивных выпадений из атмосферы составили в городах: Могилев – 1,49 Бк/м²сут, Наровля – 0,69 Бк/м²сут, Хойники – 0,72 Бк/м²сут, Брагин – 0,65 Бк/м²сут, Чечерск – 0,59 Бк/м²сут, Василевичи – 0,57 Бк/м²сут, Мозырь – 0,48 Бк/м²сут. Наибольшие среднемесячные уровни суммарной бета-активности зарегистрированы в феврале 2009 г. в г. Могилеве– 3,1 Бк/м²сут, в г. Славгороде – 3,0 Бк/м²сут, а также в марте в г. Костюковичи – 3,9 Бк/м²сут.

Анализ результатов измерений суммарной бета-активности атмосферных аэрозолей в 2009 г. показал, что наибольшие среднемесячные уровни наблюдались в январе в г. Могилеве – 44,0·10⁻⁵ Бк/м³, в феврале в г. Гомеле – 25,0·10⁻⁵ Бк/м³ и г. Мстиславле – 29,3·10⁻⁵ Бк/м³, в декабре в г. Минске – 39,5·10⁻⁵ Бк/м³. По результатам гамма-спектрометрического анализа в 2009 г. в пробах аэрозолей идентифицировались следующие радионуклиды: цезий-137, калий-40, бериллий-7, свинец-210. В таблице 10.1 представлены среднемесячные значения суммарной бетаактивности и содержания цезия-137 в пробах радиоактивных аэрозолей приземного слоя атмосферы за 2009 г.

Необходимо отметить, что контрольные уровни суммарной бета-активности, при превышении которых проводятся защитные мероприятия, составляют:

• для радиоактивных выпадений из атмосферы – 110 Бк/м²сут;

 для радиоактивных аэрозолей – 3 700*10⁻⁵Бк/м³.

В пробах радиоактивных аэрозолей и выпадений из атмосферы короткоживущих изотопов, в том числе йода-131, не обнаружено, не отмечено также существенных изменений в поведении цезия-137 в атмосферном воздухе по сравнению с предыдущими годами.

В рамках выполнения заданий Государственной программы развития Национальной системы мониторинга окружающей среды в Республике Беларусь на 2006-2010 гг. в прошедшем году были продолжены регулярные измерения содержания свинца-210 в атмосферном воздухе крупных промышленных городов. Содержание этого радионуклида определялось в месячных пробах радиоактивных аэрозолей, отобранных в гг. Минске, Могилеве, Гомеле, Мозыре, Браславе, Мстиславле, Пинске, а также в месячных пробах естественных выпадений из приземного слоя атмосферы, объединенных по территориальному признаку в зоны. Зона «Юго-Восток» включает населенные пункты Брагин, Чечерск, Мозырь, Василевичи, Наровля, Хойники, Гомель; зона «Восток» – населенные пункты Славгород, Костюковичи, Могилев, Мстиславль, Горки; зона «Центр» – город Минск, зона «Север» – населенные пункты Лынтупы, Верхнедвинск, Нарочь, Шарковщина, Витебск, зона «Запад» – населенные пункты Гродно, Волковыск, зона «Игналина»–населенные пункты Браслав, Дрисвяты.

В таблице 10.2 представлены результаты измерения содержания свинца-210 в пробах радиоактивных аэрозолей и выпадений из приземного слоя атмосферы, отобранных в 2009 г. в пунктах наблюдений радиационного мониторинга атмосферного воздуха.

Результаты наблюдений по содержанию свинца-210 в пробах радиоактивных аэрозолей свидетельствуют о незначительных сезонных колебаниях содержания этого радионуклида.

Анализ результатов радиационного мониторинга атмосферного воздуха показал, в 2009 г. радиационная обстановка на территории республики оставалась стабильной. В пробах радиоактивных аэрозолей и выпадений из атмосферы не обнаружено «свежих» радиоактивных выпадений – короткоживущих радионуклидов, в первую очередь, йода-131, уровни суммарной бета-активности и

Таблица 10.1 – Среднемесячные значении суммарной бета-активности (Σβ) и содержания цезия-137 (¹³⁷Cs) в радиоактивных аэрозолях приземного слоя атмосферы, 2009 г.

ш	Мозырь		Браслав		Гомель		Минск		Могилев		Мстиславль		Пинск	
lecs	1·10 ⁻⁵ Бк/м ³													
2	Σβ	¹³⁷ Cs	$\sum \beta$	¹³⁷ Cs	Σβ	¹³⁷ Cs	$\sum \beta$	¹³⁷ Cs						
01	15,2	2,42	13,6	0,10	21,3	2,15	16,3	1,24	44,0	3,69	22,3	1,63	18,6	1,41
02	12,6	1,91	18,8	0,16	25,0	2,18	14,3	1,32	37,0	1,97	29,3	1,52	16,6	2,19
03	16,0	2,10	10,0	0,18	21,7	1,43	14,7	0,91	30,0	0,89	21,8	1,32	10,7	1,33
04	22,6	2,45	10,4	0,18	17,9	1,47	19,0	1,30	25,0	1,23	20,0	1,05	13,7	2,18
05	15,2	3,55	9,3	0,10	12,4	1,44	13,0	0,84	19,3	0,82	14,6	0,90	10,9	1,36
06	15,9	0,96	8,4	0,28	12,7	0,70	17,0	1,21	16,3	0,42	14,9	0,22	15,5	0,78
07	14,2	0,72	10,4	0,14	10,6	1,62	19,0	1,53	14,3	0,25	12,2	0,15	13,4	0,88
08	14,4	1,03	10,4	0,06	10,0	0,62	8,7	1,83	16,7	0,37	11,8	0,32	13,5	0,98
09	19,5	1,49	10,9	0,05	13,0	0,97	8,3	0,52	21,7	0,46	18,3	0,23	13,7	0,75
10	13,4	1,47	8,2	0,11	7,6	0,90	17,3	1,98	17,3	0,43	14,8	0,99	12,2	1,41
11	10,3	2,85	9,6	0,11	4,8	0,34	39,5	1,58	31,7	0,32	20,0	1,13	13,7	2,43
12	15,3	2,56	16,4	0,12	14,2	0,91	17,2	1,69	24,9	0,36	18,1	0,73	12,2	1,70
Ср	15,4	1,46	11,4	0,20	14,3	0,90	17,0	1,22	24,8	0,98	18,2	0,74	13,7	1,11

	Содержание свинца-210											
пункт / зона	месяц											
наолюдении	1	2	3	4	5	6	7	8	9	10	11	12
	Радиоактивные аэрозоли, мкБк/м ³											
Минск	756	524	426	271	193	178	277	221	585	386	907	506
Гомель	940	1137	419	123	108	135	103	117	248	146	207	242
Пинск	407	726	282	403	282	365	289	401	585	435	882	605
Мстиславль	865	1041	456	403	294	277	269	421	553	279	480	693
Могилев	1056	1367	848	264	196	236	209	186	456	280	635	734
Браслав	277	777	236	303	205	234	169	248	513	291	440	947
Мозырь	348	352	127	126	111	109	79	134	134	107	183	134
	Выпадения из атмосферы, Бк/м ²											
«Север»	0,48	0,34	0,29	0,21	0,30	0,20	0,61	0,25	0,32	0,72	0,59	0,36
«Запад»	0,33	0,21	0,34	0,17	0,29	0,55	0,48	0,44	0,55	0,42	0,32	0,63
«Юго-Запад»	0,28	0,29	0,08	0,15	0,07	0,55	0,38	0,51	0,33	0,47	0,47	0,73
«Юг-Восток»	0,42	0,39	0,33	0,17	0,38	0,67	0,42	0,28	0,66	0,20	0,44	0,24
«Игналина»	0,29	0,23	0,22	0,26	0,23	0,55	0,44	0,61	0,47	0,47	0,31	0,52
«Центр»	0,20	0,31	0,43	0,12	0,28	0,61	0,40	0,23	0,38	0,59	0,39	0,34
«Восток»	0,45	0,35	0,28	0,12	0,21	0,47	0,41	0,31	0,47	0,63	0,97	0,35

Таблица 10.2 – Среднемесячные значения содержания свинца-210 в пробах радиоактивных аэрозолей и выпадений из приземного слоя атмосферы, 2009 г.

содержание цезия-137 в атмосферном воздухе соответствовали установившимся многолетним значениям.

Как и в предыдущие годы, повышенные уровни МД зарегистрированы в пунктах наблюдений радиационного мониторинга, расположенных на радиоактивно загрязненных территориях: гг. Брагин, Наровля, Славгород, Хойники, Чечерск. На остальных пунктах наблюдений уровни МД сравнимы с доаварийными.

Радиационный мониторинг поверхностных вод

Радиационный мониторинг поверхностных вод в 2009 г. проводился на 6 реках Беларуси, протекающих по территориям, загрязненным в результате аварии на Чернобыльской АЭС: Днепр (г. Речица), Припять (г. Мозырь), Сож (г. Гомель), Ипуть (г. Добруш), Беседь (д. Светиловичи), Нижняя Брагинка (д. Гдень) и на оз. Дрисвяты (д. Дрисвяты). Ежемесячно на основных контролируемых реках отбирались пробы воды с одновременным измерением расходов воды в пунктах наблюдений. На р. Нижняя Брагинка 4 раза в год проводился отбор для определения содержания в воде цезия-137 и стронция-90. Относительная погрешность при измерении низких уровней активности цезия-137 в поверхностных водах составляла 25-30%.

В 2009 г. содержание цезия-137 в р. Припять изменялось от 0,008 до 0,012 Бк/л; в р. Днепр – от 0,008 до 0,022 Бк/л; в р. Сож – от 0,008 до 0,052 Бк/л; в р. Ипуть – от 0,019 до 0,085 Бк/л; в р. Беседь – от 0,01 до 0,064 Бк/л.

Содержание стронция-90 в р. Припять находилось в пределах 0,006-0,018 Бк/л; в р. Днепр – 0,006-0,025 Бк/л; в р. Сож – 0,019-0,043 Бк/л; в р. Ипуть – 0,014-0,038 Бк/л; в р. Беседь – 0,021-0,040 Бк/л.

Таким образом, в 2009 г. концентрации цезия-137 и стронция-90 в этих реках были значительно ниже гигиенических нормативов, предусмотренных Республиканскими допустимыми уровнями для питьевой воды (РДУ-99 для цезия-137 – 10 Бк/л, для стронция-90 – 0,37 Бк/л).

За счет динамичных процессов водного переноса, седиментации взвесей на дно водоемов и естественного распада концентрации цезия-137 в больших и средних реках значительно уменьшились. Однако в поверхностных водах большинства контролируемых рек активность цезия-137 и стронция-90 в 2009 г. была выше доаварийных уровней.

Водосбор р. Нижняя Брагинка частично находится на территории зоны отчуждения Чернобыльской АЭС, что обуславливает более высокое содержание радионуклидов в поверхностных водах этой реки (за счет смыва их с водосбора) по сравнению с другими контролируемыми реками. В 2009 г. диапазон изменения концентраций цезия-137 в р. Нижняя Брагинка (д. Гдень) составил 0,3-0,7 Бк/л; концентраций стронция-90 – 0,5-2,5 Бк/л. Следует отметить, что содержание цезия-137 в поверхностных водах р. Нижняя Брагинка не превышает санитарно-гигиенических нормативов по этому радионуклиду, в то время как содержание стронция-90 в отдельных пробах значительно выше (в 2-6 раз) гигиенических нормативов РДУ-99.

Увеличение активности стронция-90 в поверхностных водах р. Нижняя Брагинка наблюдалось в период весенне-осенних половодий, когда в результате затопления загрязненных участков пойм происходил смыв этого радионуклида с водосбора реки. Высокое содержание стронция-90 (с превышением РДУ-99) во время паводков наблюдалось в водах рек, водосборы которых полностью или частично находятся в 30-км зоне ЧАЭС.

На рисунках 10.1, 10.2 представлены среднегодовые концентрации цезия-137 и стронция-90 в поверхностных водах контролируемых рек за периоды 1987-2009 и 1990-2009 гг., соответственно.

Среднегодовые концентрации стронция-90 снижаются, однако в отдельных пробах наблюдается их рост. Это объясняется тем, что концентрации этого радионуклида в поверхностных водах напрямую зависят от водности года, поскольку стронций-90 в почве находится в основном в ионообменной форме и его смыв талыми и дождевыми водами с водосбора происходит в растворенном состоянии, заметно усиливаясь во время паводков.

В 2009 г. были проведены экспедиционные обследования рек Припять (отбор проб в районе д. Довляды); Словечна (в районе д. Скородное, Гажин, Белый Берег); Вить (отбор проб в районе д. Тульговичи). Отобраны пробы поверхностных вод и донных отложений. Результаты гамма-спектрометрического и радиохимического анализа проб поверхностных вод и донных отложений представлены в таблицах 10.3, 10.4. Анализ данных показал, что содержание цезия-137 и стронция-90 в отобранных пробах поверхностных вод не превышает санитарногигиенические нормативы.

Уровни содержания цезия-137 в донных отложениях исследованных водных объектов находятся в пределах 21,2-2046,1

Рисунок 10.1 – Динамика среднегодовых концентраций цезия-137 в поверхностных водах рек Беларуси

Рисунок 10.2 – Динамика среднегодовых концентраций стронция-90 в поверхностных водах рек Беларуси

Таблица 10.3 –	Содержание цези	я-137 и стронция	-90 в пробах	поверхностных вод
----------------	-----------------	------------------	---------------------	-------------------

Река, створ	Дата отбора	Цезий-137, Бк/л	Стронций-90, Бк/л
р. Припять (д. Довляды)	02.09.09	0,013	0,092
р. Словечна (д. Скородное)	02.09.09	0,009	0,035
р. Словечна (д. Гажин)	02.09.09	0,019	0,034
р. Словечна (д. Белый Берег)	02.09.09	0,039	0,027
р. Вить (д. Тульговичи)	03.09.09	0,020	0,080

*РДУ-99 для цезия-137 в питьевой воде 10 Бк/л; для стронция-90 – 0,37 Бк/л

Таблица 10.4 – Содержание цезия-137 в пробах донных отложений некоторых водных объектов Гомельской области

N⁰	Дата	Цезий-137,						
точки	отбора	Бк/кг						
р. Словечна (д. Скородное)								
1	02.09.09	57,7						
2	- // -	21,2						
3	- // -	29,3						
4	- // -	30,3						
5	- // -	54,0						
р. Словечна (д. Белый Берег)								
1	02.09.09	42,0						
2	- // -	204,1						
3	- // -	52,6						
4	- // -	38,1						
5	- // -	55,5						
р. Словечна (д. Гажин)								
1	02.09.09	313,8						
2	- // -	156,0						
3	- // -	95,1						
4	- // -	35,8						
5	- // -	332,0						
р. П	рипять (д. ,	Довляды)						
1	03.09.09	1112,6						
2	- // -	179,6						
3	- // -	1908,8						
4	- // -	784,2						
5	- // -	2046,1						
р. Вить (д. Тульговичи)								
1	03.09.09	264,6						
2	- // -	163,1						
3	- // -	101,1						
4	- // -	233,9						
5	- // -	242,8						

Бк/кг. Наиболее высокие уровни загрязнения донных отложений цезием-137 характерны для р. Припять в районе д. Довляды, находящейся на территории зоны отчуждения Чернобыльской АЭС.

Радиационная обстановка на средних и малых реках, находящихся вне зоны отчуждения Чернобыльской АЭС, остается стабильной. Однако для водных объектов, водосборы которых полностью или частично находятся в зоне отчуждения Чернобыльской АЭС, необходимо проведение постоянных наблюдений за содержанием радионуклидов в поверхностных водах и донных отложениях.

Анализ результатов наблюдений 2009 г. радиационного мониторинга поверхностных вод показал, радиационная обстановка на контролируемых водных объектах оставалась стабильной. Среднегодовые концентрации цезия-137 и стронция-90 на исследуемых реках Гомельской области были значительно ниже санитарно-гигиенических нормативов, предусмотренных для питьевой воды в Республике Беларусь. Более высокое содержание радионуклидов наблюдалось в поверхностных водах рек, водосборы которых полностью или частично находятся в 30-километровой зоне ЧАЭС. В 2009 г. в р. Нижняя Брагинка (д. Гдень) содержание цезия-137 было выше, чем в других контролируемых реках, содержание стронция-90 значительно превышало гигиенические нормативы РДУ-99.

Радиационный мониторинг почв

Изучение процессов вертикальной миграции радионуклидов проводится на сети ландшафтно-геохимических полигонов (ЛГХП), расположенных в типичных ландшафтно-геохимических условиях в зонах с различными уровнями загрязнения цезием-137, стронцием-90, изотопами плутония. Это позволяет оценить динамику миграционных процессов в различных типах почв для обеспечения прогноза их самоочищения в результате природных процессов.

В 2009 г. исследования процессов вертикальной миграции радионуклидов были проведены на 4 пунктах наблюдений, включенных в Государственный реестр пунктов наблюдений сети НСМОС. Измерены уровни МД на поверхности почвы и на высоте 1 м, проведены гамма-спектрометрические испытания проб почвы, обобщены полученные результаты. Параметры вертикальной миграции цезия-137 и стронция-90 рассчитаны по данным фактического распределения активности этих радионуклидов по профилю почв с использованием конвективнодиффузионной модели (КДМ). Получены осредненные и распределенные значения параметров миграции. На основе произведенных расчетов выполнен прогноз вертикального распределения радионуклидов по профилю исследуемых почв на 2016 и 2026 гг.

Распределение активности цезия-137 по вертикальному профилю почвы ЛГХП Лесок-4 в процентах к общему запасу в 30-см слое почвы, а также прогнозные значения активности этого радионуклида, рассчитанные на 2016 и 2026 годы, представлены на рисунке 10.3. Данные обследования ЛГХП Лесок-4 показали, что к 2009 г. запас цезия-137 в верхнем пятисантиметровом слое дерново-подзолистой песчаной на рыхлых песках почвы составил 47% от его общего содержания, а в 10-см слое – 77%.

Прогнозные расчеты, сделанные для дерново-перегнойно-торфянисто-глееватой почвы, показывают, что к 2016 г. глубина проникновения цезия-137 (т.е. глубина, на которую промигрировало более 1% от запаса радионуклида в 30-см слое почвы) может составить около 20 см, к 2026 году – 24 см. Рассчитанный с помощью КДМ осредненный коэффициент диффузии цезия-137 в дерново-перегнойно-торфянисто-глееватой почве составил 0,67·10⁻⁷ см²/с, среднее смещение радионуклида составило 7,84 см, линейная скорость миграции – 0,34 см/год. Таким образом, к 2026 г. существенных изменений в характере миграции цезия-137 в почве ЛГХП Лесок-4 не предполагается. Практически весь основной запас останется в корнеобитаемом слое почвы.

Распределение активности цезия-137 по вертикальному профилю почвы ЛГХП Ломачи-5 в процентах к общему запасу в 30см слое почвы, а также прогнозные значения активности этого радионуклида, рассчитанные на 2016 и 2026 годы, представлены на рисунке 10.4. Глубина проникновения цезия-137 на гидроморфной почве ЛГХП Ломачи-5 составила 9 см. В верхних 5 см сосредоточено 87% цезия-137, в верхних 10 см – около 99%. Максимальное содержание радионуклида наблюдается в верхних 3-5 см почвы.

Выполненные с помощью КДМ прогнозные оценки глубины проникновения цезия-137 в глубь почвы показали, что к 2016 г. содержание этого радионуклида в верхнем пятисантиметровом слое почвы составит ~ 65% от общего запаса в 30-см слое, в верхнем 10-см слое – 92%. К 2026 г. в верхнем пятисантиметровом слое почвы предположительно останется 53% от общего запаса радионуклида, в верхнем 10-см слое – 85%. Осредненный коэффициент признаками избыточного увлажнения на рыхлых песках почве составил 0,20х10⁻⁷ см²/с, среднее смещение радионуклида составило 4,3 см, линейная скорость миграции – 0,19 см/год.

На рисунке 10.5 представлено распределение активности цезия-137 по вертикальному профилю дерново-перегнойно-глееватой рыхлосупесчаной почвы ЛГХП Дубрава-7 в

Рисунок 10.3 – Фактическое распределение цезия-137 по профилю дерново-перегнойноторфянисто-глееватой почвы ЛГХП Лесок-4 и прогнозные значения активностей цезия-137

Рисунок 10.4 – Распределение цезия-137 по профилю дерновой песчаной с признаками избыточного увлажнения на рыхлых песках почвы ЛГХП Ломачи-5 в 2009 г. и прогнозные значения активностей цезия-137

процентах к общему запасу в 30-см слое почвы, а также прогноз распределения содержания этого радионуклида в различных слоях почвенного профиля на 2016 и 2026 годы.

Результаты гамма-спектрометрического анализа проб почвы, отобранных в 2009 году на ЛГХП Дубрава-7, показали, что глубина проникновения цезия-137 составила 11 см. В верхних 5 см сосредоточено 80% этого радионуклида, в верхних 10 см – более 90%. Осредненный коэффициент диффузии цезия-137 в дерново-перегнойно-глееватой супесчаной почве составил 0,44·10⁻⁷ см²/с, среднее смещение радионуклида – 6,35 см, линейная скорость миграции – 0,28 см/год.

Анализ прогнозного распределения активности цезия-137 позволяет предположить, что к 2016 г. глубина проникновения этого радионуклида составит 16 см, к 2026 г. - 18 см. Согласно расчетам, незначительные изменения могут произойти в распределении цезия-137 по почвенным слоям. Запас этого радионуклида в верхних 10-см к 2016 и 2026 гг. составит 84 и 79%, соответственно. В верхнем 5-см слое почвы к 2016 г. останется 63% цезия-137, к 2026 г. – около 58% от общего запаса радионуклида в 30-см слое.

В 2007 г. на основе данных фактического распределения цезия-137 были произведены прогнозные расчеты вертикального распределения этого радионуклида по профилю дерново-перегнойно-глееватой супесчаной почвы ЛГХП Дубрава-7. На рисунке 10.6 представлены кривые, отражающие прогноз пространственного распределения цезия-137 на 2016 и 2026 годы, рассчитанные на основе реальных данных 2007 и 2009 гг.

Фактическое распределение активности цезия-137 и стронция-90 по вертикальному профилю почвы ЛГХП Погонное-8, а также

Рисунок 10.6 – Прогнозные расчеты вертикального распределения цезия-137 по профилю почвы ЛГХП Дубрава-7 на 2016 и 2026 годы, сделанные на основе реальных данных 2007 и 2009 гг.

прогнозные значения активности этих радионуклидов, рассчитанные на 2016 и 2026 годы с помощью КДМ, представлены на рисунках 10.7, 10.8. Данные обследования ЛГХП Погонное-8 показали, что к 2009 г. глубина проникновения цезия-137 по профилю дерново-подзолистой связнопесчаной на песках почвы составила 7 см, запас радионуклида в верхнем 5-см слое почвы составил 86% от его общего содержания, а в 10-см слое – 97%. По всей видимости, гумусовый горизонт явился мощным геохимическим барьером, в котором аккумулировалась основная часть радионуклидов.

Прогнозные расчеты, сделанные для дерново-подзолистой связнопесчаной на песках почвы ЛГХП Погонное-8, показывают, что в ближайшее время глубина проникновения цезия-137 значительно изменится – к 2016 г. она может составить 19 см, к 2026 г. – 22 см (рис. 10.86, 10.8в). Не ожидается значительного перераспределения активности цезия-137 по вертикальному профилю: в 10-см корнеобитаемом слое почвы к 2016 г. останется 75% цезия-137, а к 2026 году – около 70%.

Рассчитанный с помощью КДМ осредненный коэффициент диффузии цезия-137 в дерново-подзолистой связнопесчаной на песках почве составил 0,39·10⁻⁷ см²/с, среднее смещение радионуклида – 6,03 см, линейная скорость миграции – 0,26 см/год. Результаты радиохимического анализа проб почвы, отобранных в 2009 г. на ЛГХП Погонное-8, показали, что глубина проникновения стронция-90 на дерново-подзолистой связнопесчаной на песках почве составила 20 см. В верхних 5 см сосредоточено около 26% стронция-90, в верхних 10 см – около 41%. Максимальное содержание стронция-90 обнаружено на глубине 15 см, на глубине 15-19 см сосредоточено более 37% от общего запаса радионуклида в слое.

Рассчитанный с помощью КДМ осредненный коэффициент диффузии стронция-90 в почве ЛГХП Погонное составил 1,9·10⁻⁷ см²/с, среднее смещение радионуклида – 13,3 см, линейная скорость миграции – 0,58 см/год.

Прогнозные оценкиглубины проникновения стронция-90 в почву показывают: к 2016 г. в верхнем 5-см слое почвы ЛГХП Погонное-8

Рисунок 10.7 – Фактическое вертикальное распределение цезия-137 по профилю дерновоподзолистой связнопесчаной на песках почвы ЛГХП Погонное-8 и прогнозные значения активностей этого радионуклида

Рисунок 10.8 – Распределение стронция-90 по профилю дерново-подзолистой связнопесчаной на песках почвы ЛГХП Погонное-8 и прогнозные значения активности стронция-90

будет находиться около 20% от общего запаса радионуклида в слое, в верхнем 10-см слое–40%. К 2026 г. в верхнем 5-см слое почвы будет находиться более 18% от общего запаса стронция-90, в верхнем 10-см слое – 36%.

На рисунке 10.9 представлена динамика линейной скорости миграции цезия-137 в почвах трех ЛГХП (наблюдения ведутся с 1993 г.). В почвах различной степени гидроморфности происходит уменьшение линейной скорости миграции радионуклидов.

Средняя линейная скорость вертикальной миграции цезия-137 в полугидроморфных почвах ЛГХП Лесок-4, Ломачи-5 и Дуброва-7 в 2009 г. составила 0,31, 0,19 см/год и 0,28 см/год, соответственно (в 1993-1994 гг. она находилась в пределах 0,50-0,80 см/год). Таким образом, за наблюдаемый период (1993-2009 гг.) скорость миграции цезия-137 снизилась почти в три раза.

Результаты, полученные в 2009 г. подтверждают сделанные ранее выводы о том, что интенсивность миграционных процессов со временем снижается. В почвах различной степени гидроморфности произошло уменьшение линейной скорости миграции радионуклидов за счет существенного уменьшения доли радионуклидов, мигрирующих в составе коллоидных частиц вглубь почвы с потоком влаги (конвективный перенос). В настоящее время диффузия является основным механизмом, обуславливающим пространственное перераспределение радионуклидов по вертикальному профилю почв.

По всей вероятности, в ближайшем будущем линейная скорость миграции радионуклидов в различных типах почв будет находиться в пределах 0,20-0,35 см/год. Наличие геохимических барьеров, фиксирующих радионуклиды и препятствующих их проникновению в более глубокие слои почвы, будет обуславливать низкую интенсивность миграционных процессов.

Результаты наблюдений *радиационного* мониторинга почв, подтверждают, что в настоящее время интенсивность миграционных процессов снизилась. В почвах различной степени гидроморфности произошло уменьшение линейной скорости миграции радионуклидов.

Рисунок 10.9 – Динамика линейной скорости вертикальной миграции цезия-137 в полугидроморфных почвах ЛГХП Лесок-4, Ломачи-5 и Дуброва-7 за период 1993-2009 гг.